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Abstract: Atomic force microscopy (AFM) is one of the most important tools in scanning probe microscopy. It is based
on the oscillations of a cantilever beam which interacts with the measured sample. Due to the inherent nonlinearities of
the interactions between beam tip and sample, the mathematical modeling of the cantilever beam dynamics has become
indispensable to provide a better understanding of its behavior and more robust control design to improve its operation
performance. In the present work, the AFM cantilever beam is represented by a sliding-free Bernoulli-Euler beam with
a tip mass in its free end. In the sliding base, two models of excitation are considered: imposed force and prescribed
displacement. For validation purposes, images obtained in a scanning electron microscope (SEM) were used to estimate
the geometric parameters of two different cantilever beams. Using these parameters together with a developed finite
element model, the first resonant frequencies of the beams were numerically evaluated and compared to the corresponding
values obtained from experimental AFM tunning. With the validated models, the dynamics of the cantilever beams when
subjected to tip-sample interactions are analyzed. For the tip-sample interactions, an attraction-repulsion model based
on Lennard Jones potential is considered. The numerically obtained responses of the cantilever beams are analyzed using
Fast Fourier Transform, phase portraits and time history. In particular, the effect of the nonlinearity of the tip-sample
interactions on the dynamical response is analyzed. Finally, comparisons between the two excitation models, imposed
force and prescribed displacement, are performed to help understanding which model is the most appropriate.
keywordsAtomic Force Microscopy, Sliding-free beams, Lennard Jones, finite element method, nonlinear dynamics

1. INTRODUCTION

The atomic force microscope (AFM) is a device that uses a sharp tip at the free end of a cantilever beam (∼ 140nm)
to trace the topography of nanoscale samples (Schitter et al., 2004). An important AFM mode of operation is the
intermittent (tapping) mode, in which a piezoceramic actuator excites the sliding base of a cantilever beam at or near its
resonance frequency. A vibration amplitude of the sliding base is set by the AFM operator while a laser beam detects
the cantilever tip deflection. Than, the error between the reference and acquired signals is minimized by a feedback
controller. The feedback height correction generates a colored pixel corresponding to the height of the sample surface at
this xy coordinate. The nonlinear interactions of the cantilever tip and sample is an important aspect of the AFM operation.
Due to this nonlinearities, neither the photodetector nor the control system work efficiently, therefore, the modeling and
understanding of the cantilever dynamics is essential to improve the AFM operation (Jalili and Laxminarayana, 2004).

In the last decades, several works were published focusing on the nonlinear dynamics of AFM cantilever beams
(Dankowicz, 2006; Misra et al., 2008; Nozaki et al., 2010; Balthazar et al., 2012; Zhao and Dankowicz, 2006). Most of
these works use one degree of freedom models to represents the cantilever beam (spring-mass-damper) and, in general, the
tip-sample interactions are modeled using Van der Waals theory, Lennard Jones (LJ) potential or the Dejarguin-Muller-
Toporov model. One of the disadvantages of these previous approaches is that parametric design is not allowed.

In the present work, two finite element models are proposed for an AFM cantilever beam (with prescribed displace-
ment or imposed force at the sliding base), Using known material and geometrical parameters obtained via Scanning
Electron Microscope (SEM) of the cantilever beam, its frequency response function (FRF) is evaluated with both models
and compared to experimental FRF obtained through AFM tunning. Then, the validated model is used to simulate the
dynamics of the cantilever beam in presence of a sample surface. The cantilever tip-sample interaction forces are modeled
using LJ potential.

2. FINITE ELEMENT MODELING

Standard Bernoulli-Euler beam finite element model is considered for the cantilever beam. The beam is considered
to be homogeneous and uniform with length L, width b, thickness h and made of a material with Young’s modulus E,

VERSÃO PRELIM
IN

AR. O
S ANAIS D

EFIN
ITIVOS 

SERÃO PUBLIC
ADOS APÓS O

 EVENTO.



V I I I C o n g r e s s o N a c i o n a l d e E n g e n h a r i a M e c â n i c a, 1 0 a 1 5 d e a g o s t o d e 2 0 1 4, U b e r l â n d i a -M i n a s G e r a i s

Poisson’s ratio ν and mass density ρ. As shown in Fig. 1, a concentrated inertia, with mass mt and moment of inertia It ,
is included at the free end (tip) of the beam.

Figure 1: Schematic representation of the AFM cantilever beam.

2.1 Finite element discretization of displacements and strains

Considering the standard Bernoulli-Euler theory for a slender beam in xz plane deflection, the displacements field can
be written as

u(x,y,z, t) =−zw′(x, t), v(x,y,z, t) = 0, w(x,y,z, t) = w(x, t), (1)

where w′ = ∂w/∂x is the cross-section rotation angle.
Based on these kinematic hypotheses, the only non-null mechanical strain, that is the normal longitudinal strain εx,

can be written from the usual strain-displacement relation as

εx =−zw′′. (2)

Hermite cubic shape functions are assumed for the discretization of the transverse deflection w(x, t), along the element
length Le, such that a two node finite element with two degrees of freedom per node, namely deflection wi and cross-section
rotation angle w′

i (i = 1,2), is obtained as shown in Fig. 2.

Figure 2: Bernoulli-Euler beam finite element.

The elementary degrees of freedom (dof) column vector ue is defined as

ue =


w1
w′

1
w2
w′

2

 . (3)

2.2 Equations of motion for the AFM cantilever beam accounting for the probe tip

The variational equation of motion of the cantilever beam may be written as:

δΠ =
∫ {

δut (Mü+Du̇+Ku−F)+
[
δw(L, t)mt ẅ(L, t)+δw′(L, t)It ẅ′(L, t)

]}
dt = 0, (4)

where u is the global dof vector, M, D and K are global mass, damping and stiffness matrices and F is the global applied
forces vector. Notice that both the deflection and cross-section rotation angle at the beam tip, w(L, t) and w′(L, t), are
included in the global dof vector u and, thus,
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w(L, t) = Lwu, w′(L, t) = Lwxu, (5)

with

Lw =
[
0 · · · 0 1 0

]
, Lwx =

[
0 · · · 0 1

]
. (6)

Replacing (5) in (4) leads to

(M+Mt)ü+Du̇+Ku = F, (7)

where the equivalent mass matrix corresponding to the probe tip, Mt , is written as

Mt = Lt
wmtLw +Lt

wxItLwx. (8)

The ad-hoc damping matrix D included in the equations of motion was considered to be proportional to the cantilever
beam mass and stiffness matrices, M and K, such that

D =αM+βK, (9)

where the constantsα and β must be determined a posteriori. A modal reduction was performed in the system and can be
found, as well as more details on the finite element model, in (Rodrigues and Trindade, 2013).

3. BOUNDARY CONDITIONS

Tip-sample interaction forces are implemented as force boundary conditions at the free end of the cantilever beam
(x = L). For the base excitation, two methods are considered: prescribed displacement and imposed force at the sliding
base (x = 0).

3.1 Interactions forces between probe tip and sample surface

In the present work, a non-smooth LJ potential model is considered to represent the interactions between the cantilever
tip and sample surface. LJ potential describes the interactions between two uncharged molecules or atoms. The diagram
in Fig. 3 is a representation of how atoms in probe tip and sample interact, the greater the distance, the less interaction
(Salvadori, 2013).

Figure 3: Scheme of molecular interaction (Salvadori, 2013).

According to Rutzel et al. (2003), it is reasonable to use LJ potential in AFM, since it represents both long range
attractive and short range repulsive forces, present in the tip-sample system.

Considering a probe tip with radius R and a function r(t) that represents the distance between probe tip and sample,
the LJ potential energy function PLJ(r) and corresponding interaction force FLJ(r) may be written as (Israelachvli, 1991;
Rutzel et al., 2003):

PLJ(r) =
H1R

1260r(t)7 − H2R
6r(t)

(10)

and

FLJ(r) =
∂PLJ

∂ r(t)
=

H1R
180r(t)8 − H2R

6r(t)2 . (11)

where H1 and H2 are the Hamaker constants for the attractive and repulsive potentials. They may be written as H1 =
π2C1ρ1ρ2 and H2 = π2C2ρ1ρ2, where ρ1 and ρ2 are the number of atoms per unit volume in the each body and C1 and C2
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are the interaction coefficients of particle-particle intermolecular potential (Rutzel et al., 2003). Therefore, for a known
probe tip, the Hamaker constant may vary depending on the material properties of the sample surface (Israelachvli, 1991).

Considering its dynamic variation, due to the cantilever beam deflection, the distance between probe tip and sample
surface is written as

r(t) = d +w(L, t), (12)

where d is the non deflected tip-sample distance, and w(L, t) is the deflection of the cantilever beam tip. In a region very
close to the surface, the regions with attractive and repulsive regimes have to be differentiated. Assuming that a0 is the
repulsive region, in a distance larger than a0 only the attractive term of LJ potential will be considered. In a distance
smaller than a0 the interaction between repulsive and attractive forces is considered. According to Stark et al. (2004) and
Babahosseini et al. (2009), the distance a0 is approximately 3Å.

Figure 4: Scheme of cantilever deflection.

Considering Fig. 4 and replacing Eq. (12) in Eq. (11), the force element ft(t) may be written as

ft(t) =


− H2R

6r(t)2 , if r(t))> a0

H1R
180r(t)8 − H2R

6r(t)2 , if 0 < r(t)≤ a0

(13)

In order to include (13) into the finite element model, a force vector Ft(t) = bt ft(t) is defined, where bt = [0 · · ·0 1 0] is
a boolean vector that associates the force amplitude ft(t) with the nodal dof corresponding to the transverse displacement
at the free end of the microcantilever beam. This force vector is then included as an applied mechanical forces vector in
equation Eq. (7).

3.2 Base excitation of AFM microcantilever beam

Considering only the transversal displacement in x= 0, with the beam cross-section rotation angle set to zero (w′(0, t)=
0), two different approaches were used to account for the transversal excitation: either an imposed force fb(t) applied to
the moving base of the cantilever beam or a prescribed displacement w(0, t) = wb(t) of the moving base.

In the case of imposed transversal force, a force vector Fb(t) = bb fb(t) is defined, where bb = [1 0 · · · 0] is a boolean
vector that associates the force amplitude fb(t) with the nodal dof corresponding to the transverse displacement at the
base of the microcantilever beam (Rodrigues and Trindade, 2013). A known sinusoidal excitation force is considered,
such that fb(t) = f̃b sin(ωbit).

In the case of prescribed displacement, the finite element model degree of freedom corresponding to the transversal
displacement at the moving base is separated from the others, so that the equations of motion Eq. (7) are rewritten as

[
δwb δut

r
]{[Mpp Mpr

Mt
pr Mrr

][
ẅb
ür

]
+

[
Dpp Dpr
Dt

pr Drr

][
ẇb
u̇r

]
+

[
Kpp Kpr
Kt

pr Krr

][
wb
ur

]
−
[

fp
Fr

]}
= 0, (14)

where wb(t) is the prescribed displacement at the base of the cantilever beam and ur is the remaining unknown dofs vector.
Then, considering that δwb = 0, since wb is prescribed, the first line of Eq. (14) is automatically satisfied and the terms
involving wb can be included as an equivalent force applied to the remaining system
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Mrrür +Drru̇r +Krrur = Fr +Fb, (15)

where the equivalent force vector Fp associated with the prescribed base displacement is written as

Fb =−(Mt
prẅb +Dt

prẇb +Kt
prwb) (16)

If a known sinusoidal base transversal displacement is considered, such that wb(t) = w̃b sin(ωbt), the corresponding
force vector Fb is

Fb =−[(−ω2
bMt

pr +Kt
pr)sin(ωbt)+ωbDt

pr cos(ωbpt)]w̃b. (17)

4. MODEL VALIDATION AND NONLINEAR ANALYSIS RESULTS

The goal of this section is to validate the mathematical model through comparison between experimental data and
numerical results.

4.1 Model Validation

The experimental data was acquired via SEM and AFM at the Thin Films Laboratory (LFF) in the Physics Institute
of the University of São Paulo (IFUSP). The cantilever tip was modeled as a cone, thereby, tip mass and inertia moment
were estimated and are shown in Table 1. The figures 5(a) and 5(b) present the images obtained for a cantilever beam
using SEM.

(a) Cantilever frontal view (b) Cantilever side view

Figure 5: Cantilever images

Table 1: Known material parameters and estimated geometrical parameters based on SEM images for an AFM cantilever.
Parameter Symbol Value Unit
Length of microcantilever L 140 µm
Width of the microcantilever b 33 µm
Thickness of the microcantilever h 3.37 µm
Young Modulus E 176×109 N/m2

Microcantilever density ρ 2330 Kg/m3

Second moment of area I 105.25 µm4

Area A 111.21 µm2

Tip radius R 150 nm
Tip mass mt 3×10−10 Kg
Tip moment of inertia It 23.4×10−22 Kgm2

Considering the parameters presented in Table 1 and the cantilever beam with free tip (that is, without tip-sample
interaction forces), the FRFs for both models were evaluated and compared to experimental ones obtained using AFM
tunning. Results are shown in Fig. 6. They were also used to evaluate the resonance frequency of the cantilever beam.
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Figure 6: Comparison between experimental data and numerical simulations, red: experimental data, blue: Prescribed
displacement, black: imposed force.

Table 2 presents the resonance peak frequencies for both models and relative errors compared to the experimental
value.

Table 2: Experimental and numerical peak frequencies (kHz)
Peak Relative Error

Experimental 225.65 −
Prescribed displacement model 220.65 2%
Imposed force model 352.5 56.21%

It is concluded that the model with prescribed displacement presents better results and, thus, will be considered for
future simulations.

Fig 7 shows the FRFs zoomed near the resonance frequency. In this preliminary study, this comparison was only used
to validate the finite element model, but it could and will also be used to estimate damping properties to be included in
the model.
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Figure 7: Comparison between prescribed displacement model and experimental data

Based on satisfactory results obtained by prescribed displacement model, it is now used for a nonlinear analysis of the
dynamics of the cantilever beam when subjected to tip-sample interaction forces.

4.2 Nonlinear analysis results

The simulations were performed in order to compare the system with and without the tip-sample interactions (relying
on LJ potential). Using an harmonic excitation with prescribed displacement, a time response analysis was performed via
Fast Fourier Transform (Fft), time history and phase portrait. A proportional damping was considered withα=β= 10−6,
and the parameters of the tip-sample interactions model are shown in Table 3.
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Table 3: Parameters
Parameter Symbol Value Unit
Repulsive Hammaker constant H1 1.3956×10−16 Jnm6

Attractive Hammaker constant H2 865×10−19 J
Excitation Frequency Prescribed Displacement ωbp 210.9×103 Hz
Tip-sample distance d 40 nm
Presc. displacement amplitude w̃b 30 nm

Results in figure 8(a) shown that the system free of LJ potential presents a predominant peak in the excitation frequency
with a small variation at its resonance one. On the other hand the system with LJ potential (Fig. 8(b)) presents several
peaks in different frequencies, evidencing the presence of nonlinearities when the tip-sample interactions were considered.
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Figure 8: Comparison between the system with and without LJ potential

In time history results, the system free of LJ potential has a regular and symmetrical tip displacement amplitude.
Without LJ potential, its also features regular motion. Due to the action of repulsive forces, the symmetry disappears
flattening the vibration amplitude, when tip approaches the sample surface.
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Figure 9: Comparison between the system with and without LJ potential

As we can see from Fig 10(a), the points have a symmetry around the origin in the phase portrait of the system without
LJ potential, which is a typical feature of linear systems. On the other hand, the system with LJ potential, in Fig 10(b),
shows a decrease of velocity and a flattening of the displacement in the region close to the sample surface.
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(a) Without LJ potential
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Figure 10: Comparison between the system with and without LJ potential

5. CONCLUSIONS

The goal of this work was to validate the finite element model proposed by Rodrigues and Trindade (2013) using
known geometrical parameters and resonance peak value obtained by experimental data. The validation of both models,
with imposed force and prescribed displacement were performed and the comparison with the experimental data showed
different results. While the imposed model showed a peak resonance much larger than the experimental data (> 50%), the
model with prescribed displacement showed satisfactory result, with a peak frequency 2% smaller than the experimental
one. Therefore, the model with prescribed displacement was selected for future numerical simulations.

The simulations were performed in order to understand the influence of the tip-sample interactions (LJ potential).
Therefore, the simulations were performed with and without the influence of LJ potential. Without LJ potential, the
cantilever tip displacement was symmetrical and the fft showed only the presence of the excitation frequency. With LJ
potential, the cantilever tip displacement was asymmetrical, which showed the presence of a repulsive region, flattening
the tip displacement amplitude. The fft analysis showed a large number of resonance peaks and the phase portrait showed
decrease of velocity and flattening of tip displacement, result of the nonlinear tip sample interactions, . Thereby, it is
concluded that with known geometrical parameters, the prescribed displacement cantilever beam finite element model
proposed, showed to be feasible and may be used for future works, which could consider the presence of a sample thin
water film, a damping analysis, as well as different models of tip-sample interactions.
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